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Existing formulas for the confidence of estimates of modified Al lan variance (mvar) are
based on the reinterpretation of mvar in terms of third differences of the cumulative sums w,, of
time residuals x,,. These formulas work only if the long-term linear frequency drift rate is zero, or
can be removed from the data. In analogy with the “overall second difference”’ drift estimator,
which uses three values of x,,, an unbiased drift estimator is constructed from four values of w,,
placed according to a minimax variance criterion. Partly because of the noise rejection of the
cumulative-sum operation, the resulting “4-point w* estimator has comparatively low variance
for al five standard noise types, white PM to random-walk FM. Its variance is tabulated
alongside those of several well-known drift estimators, arranged in “discreteness’ classes for
easy comparison.

When an mvar estimator is applied to data from which an estimated drift is removed, the
the estimated mvar, in general, has a nonzero bias, and its variance differs from that of the
corresponding estimate in the situation of zero or known drift. These effects are computed for the
4-point w drift estimate. As expected, the mvar bias depends greatly on the noise type, becoming
heavily negative for large averaging times t in the presence of random-walk FM noise. On the
other hand, the number of degrees of freedom of the mvar estimator turns out not to be greatly
affected by drift removal, so that a simple noise-independent conservative strategy to account for
it can be devised.

A formula, almost noise-independent, for the variance of the 4-point-w drift in terms of
mvar is given. Unfortunately, to use this formula one has to extrapolate the value of mvar at the
largest possible t, with the true drift removed, from values of mvar for lesser t.

It is apparent that other means for uncoupling the deterministic and random aspects of
clock behavior should be considered. Among these are higher-order variances, the “totvar”
method, and frequency-domain techniques.

‘I'nis work was performed at the Jet Propulsion Laboratory, California Institute of I'ethnology,
under a contract with the National Aeronautics and Space Administration.
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Abstract

A drift-rate estimator constructed from four values of the cumula-
tive sum of clock residuals is shown to have good error perforinance
in the presence of the five standard power-law noises. A comparison
table of several drift estimators is given. The bias and variance (or
equivalent degrees of freecdom) of a modified Allan variance estimator
incorporating drift removal is calculated.

1 Introduction

The confidence of estimates of modified Allan variance (invar) can be derived
from previously-published formulas and algorithms [1, 2, 3], butonly for sit-
uat ions in which mvar is not dominated by linear frequency drift. For such
a situation to hold, either the actual drift rate must be negligible for a given
span of clock data, or the drift rate must be removed after being estimated
from a longer span of data or by another method, such as hydrogen-maser
cavity tuning. The present investigation has two goals: 1) design of a drift
estimator with sat isfactory error performance in the presence of the five
standard power-law phase noise models; 2) finding out how removal of drift,
as estimated from the current data, affects the bias and variance of the esti-
mated mvar of the residuals, and thereby designing an automatic procedure
for assigning mvar confidence intervals.

The first goal is achieved by a linear combination of four values chosen
from the sequence of cumulative sums of the time residuals. The variance of



the chosen estimator for the five standard noise models is compared to that
of several other drift estimnators. Table 1 gives a concise present ation of their
variances in a uniform notation, along with a “discreteness” classification of
drift estimators.

The second goal is partially achieved, in that the required ncan and
variance comput at ions were successfully carried out; results are presented
below (Figs. 2 and 3). Unfortunately (and not unexpectedly), the bias of
the “net” (drift removed) mvar estimator depends so heavily on the noise
type that the author does not know how to compensate for the bias without
human judgment of the dominant noise type and a risky extrapolation of
the sigma-tau curve to an unobservable region.

2 Drift Estimator Design

The design is based on continous-time power-law models of phase noise. Let
z(t) ,0< t< T, be the time departure of a clock, withy (¢)=dux(t) /dt the
normalized frequency depart ure, and let w (t) =[x (t)dt, the cent inuous-
time analog of the sequence w,, = Z;‘:_la: (n70), whose third differences can
be used for computing modified Allan variance [2]. The idea is to make
an unbiased estimator of frequency-drift rate from discrete valuesof w ()
instead of values of z (t), thus gaining the advantage of an integration over
tile noise in 2 (t). A quadratic component3ct? of x (t) appears as a cu-
bic component %btf w (t); consequently, at least four values of w (t) are
needed.
Consider the one-parameter family of estimators

6 w (T -11)-w(rT)
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where O < r< 1/2. If w(t) were a cubic polynomial with leading term
38, then &(r) would equal c. Selection of 7 is basced on the behavior
of the variance of &(r) under the five standard power-law x noises: white
PM, flicker PM, white FM, flicker FM, and random-walk FFM, with spectral
densities S (f) o f3 8= 0, -1, =2, -3, —-4. Since Sy, (f) x fﬁ’z, which is
integrable over high frequencies, one canclowithout a high-frequerncy cut off.

The parameter 7 is chosen according to a minimax criterion. By the
method of the generalized autocovariance (gacv),ClOSCd- form expressions
for var ¢(r)as a function of 7 can be derived for the five noise types. Figure



1 shows plots of
var ¢ (77)
v N =— -—-—:7" —
g O inf var é(r)’
0<,<1/2
indexed by |3|. Since the upper envelope of the five vg functions has a
minimum at = 0.0958 . . . (the intersection of the curves for white PM and
white FM), it is reasonable to choose 7 =: 1 /10 for simplicity. Doing so gives

a drift estimator

50 [, o\ (T c2)
&4 = 373 Aﬁw (1) - 4w (0) — 5w (-1—0> + dw (T@)J ,

henceforth called the four-pointw estimator, abbreviated as w4. It is also
apparent from Fig. 1 that the performance of the estimator could be im-
proved by eliminating white PM from the noise set; the corresponding min-
imax value of 7 would be about 0.0337.

In practice, onc uses a cliscrete-time version of w4: Given phase data
xy =a (n1g) for n=1,..., N, form the sequence w,,, where Wo is arbitrary
(usually O), wy, =wp+ ) : ;. Choosing an integer 7y close to N/10, let
r1==n7 /N. The drift estimator is given by

WN—p) — Wy,

1-27] “ )
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Theoretical formulas for the variance of &,4 were checked by simulations

of €wad for all five noise types, with 1000 runs of N = 100 points each.

Excellent agrecment was observed. Below, a possible method for estimating
the variance of ¢4 from the data is given.

3 Comparison with Other Estimators

Recent papers of Logachev and Pashev [4] and of Weci [5] give variance tables
for other unbiased drift estimators under all or some of the standard noise
types. Following arc names and abbreviations for these estimators, and
formulas for the continuous-time analogs that were used for verifying the
previous results and consolidating them into a uniform notation.
Least-squares quadratic fit to x (1.Sa), optimal for white PM:

; _ 60 [T S
Cse = g (6t — 6Tt + 72) a(t)dt (4)
0
60 , " :
7 (w(T)-w (0)] --*/7 (2t - T)w(t) Cit. 5)
0



Three-point x (X3), also called overall sccond-differerice:

L NS
Ca3 = 773 [:1, (0) — 2z <2> +a(d )} . (6)
Least-squares linear fitto y (LSy), optimal for white FM:
; 6 [T
asy = o /0 (2t - T)y () dt @)
_ 6 12T
Sl @) e ()] /0 @ (1) dt. (8)

Least-squares constant fitto z = dy/dt (1, Sz), also called two-point y,
optimal for random walk FM:

use = 0=y M-y (0)]. )

As defined, this estimator canbeappliedto random walk FM but not to
infinite-bandwidth white and flicker F'M (let alone the PM noises), for which
point values of y (1) are not defined. Iu its place oneuses a discrete-time
version called two-point §(§2) or mean second-difference:

és :Uv'i\%ﬁi [:17 (T) -2 <7’~ %)—m (%)+-a~,(0)J, (10)

for which the sample period of «(¢)is presumed to be T/N.

These drift estimators fall into a natural classification that determines
the noise types over which they are effective. The 204 and .Sz estimators are
called w-discrete because they contain discrete values of w (t),and perhaps
also integrals over w (f). Likewise, x3,1.Sy, ant] 2 arc x-discrete, and LSz
is y-discrete.

Table 1 gives the variance of all these drift estimmators over the five noise
types, scaled according to the convention Sy} (f) = hg, 2/ for the one-
sided spectral density of y (t). For these results toapply to the actual
discrete-time estimators, the high-frequency cutofl f), of the noise must sat-
isfy the Nyquist criterion for thesample period 7o, i.e., 2f,7o< 1 [6]. ‘The
results are asymptotic relative to the assumptions 2r f, T >>1, N >>1. With
minor changes inlogarithmic expressions, the results agree with the cited
references. The numbers in brackets arc the rankings of the estimators over
those noises for which the variance is independent of ¥}, anddatasize N (in
the range of the assumptions).



The similarity of the estimators in the same discreteness class is appar-
ent. The w-discrete estimators are bandwidth-independent for all the noises,
the z-discrete estimators only for the FM noises. If all the noise types are
included, then w4 is the best overall drift estimator. If only the FM noises
are included, then LSy is best; even so, for random walk FM the w4 variance
is only 10% more than the LSy variance.

4 Gross and Net Mvar

Assume that the time deviation process z(t) has stationary sccond differ-
ences. Then it has a constant frequency drift rate c;, which, if nonzero, gives
rise to an mvar component 0272/2 that dominates mvar for long averaging
times. In terms of the time residuals @, = x(n70) ancl their cumulative
sums wy,, we have

E (A,Qna:,l) =, 7%, E (ToAfnw") = ¢, 72,

where 7=m70, F denotes mathematical expectation, and A, is the back-
ward difference operator with stride . According to the third-difterence
formulation of mvar [2],

1
mod o3 (r) - =47 [(roatan)’]

Because it includes drift, this is called gross mvar. To define net mvar,
replace the expected square by the variance:

1
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Net mvar, which is invariant to the value of ¢;, can also be defined as mvar
of the reduced time residual process z (t)— c,t%/2.

Now suppose that one has time data x1,... , T~ with sample period 7,
and let T = 1vr.. For any constant c, formm the quantity

N
1
Ve (TvTa C) = 5;4—]\/] Z (TOA?n“’n - CTB)Q ’ (11)

n=3m
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where M =N — 3m + 1. Then V, (7,7, 0) is an unbiased estimator of gross
mvar (and also gives (1 1) for any c if , is replaced by a, — cT3n?/2 or w,, by
Wy, — 07(2)7L3/6). If ¢; is known, thenV; (7, T, ¢;) is anunbiased estimator of
net mvar. More often, one has some unbiased estimate ¢ that depends only
on the data at hand.In this case, the corresponding estimator V. (7,7, ¢),
while nonnegative and invariant to the true! value of ¢,, is biased for net
mvar because subtracting an estimated drift tends to cut into the long-term
random fluctuations.

For theoretical computations of the mean and variance of these estima-
tors, it is convenient to approximate the above setting by a continuous-time
formulation that uses the asymptotic modified Allan variance of Bernier [6]
and a continuous-time analog of (11) in which tile sum becomes an inte-
gral. This approximation is valid provided 7/To >> 1; simulations indicate
that 7/To> 8 is adequate. The w4 drift estimator é,4 is used for form-
ing the biased net mvar estirnat or. Because Vy (1, 1), ¢;) and Vy (7,7, éua)
are invariant to true drift rate ¢,, one can assumec, = O; then the third
w-cliff rences have mean zero. Using the gacv met hod,one can compare
the mean of V, (. T, éu4) to the true net mvar; assuming also that the
third w-differences form a Gaussian process, one can compute the variance
of Vo (7,T,¢c,) and V, (1, T, éu4). The computations, similar to those for
conventional Allan variance [7], are not given here.

Figure 2 shows the bias of thenet mvar estimator V, (7, T, é,4) in terms
of mdev (square root of mvar) as a function of 7'/7 for the five standard noise
types. As an example, take the most extreme case, random walk FM and
T/7 =3, for which EV, (7, T, é,4) = 0.06352 mod 050 (m; the plotted value
is v/0.06352 — 1 = —74.8%. Simulation results (N = 1152, 10000 trials),
shown by the open symbols, agree well enough with theory to serve as curve
labels. Especially in view of the persistent large negative bias for random
walk FM (still —12.5% for /7 = 10), one necds to adjust measurement
results on a model-dependent basis.

Figure 3 shows how removing the w4 estimated drift changes the confi-
dence of the mvar estimator. Confidence is measured by equivalent degrees
of freedom (edf), defined for a positive random variable X by edf X =
2 (EX)2 / var X. computations and approximations for the edf of the un-
biased estimator V; (1, T',c,) have previously beengiven [2, 3]. Here, the
continuous-time formulation was used for approximating those computations
and computing the edf of the biased net mvar estimator V, (7, T, éy4). Fig-
ure 3 shows edf (biased) — edf (unbiased) vs. T/T for the standard noises.
The relative difference is small since all the edfs arc of order 7/7;a simn-



ple conservative approximation for edf (biased) is edf (unbiased) -- 0.75.
At 7 = T/3, each eclf is 1 because the estimmator is the square of a single
Gaussian random variable.

5 Estimating Drift Estimator Variance

In their discussion of the a3 drift estimator, Weiss and Hackman [8] point
out that its variance is simply (8/17) 050 (1'/2), where 050(7) is net con-
ventional Allan variance, i.e., Allan variance with the true drift retnoved. In
turn, 050 (T/2) is to be estimated from the data by extrapolating the esti-
mated 050 (T) (using éz3itself to remove drift) for lesser T out to 7 = T/2.
‘This requires human judgment of the behavior of the net sigma-tau curve
in the face of increasing bias ant] variance as 7 increases.

The variance of the w4 drift estimator can be estimated by a similar
method using net mvar. One finds that

s AR e
var (@4:7151110(1 o,0(1'/3),

where Ag = 3.70, 3.14, 3.14, 3.41,3.80 for 3 = O to —4 (white PM to random
walk FM). Therefore, a conservative estimate of the standard deviation of
Cwa is (3.8/T) mod 040 (T/3). Again, this requires intelligent extrapolation
of the curve for estimated net mdev out to 7=7"/3, where net rnvar is
essentially unobservable because its estimator has one degrec of freedom
and a bias as large as —93.6%.

6 Concluding Remarks

The four-point w drift estimator described above deserves consideration as
a general-purpose method for estimating frequency drift rate. From Table 1
onc can calculate the ratio of its standard deviation to those of the optimal
estimators for the even-prower noises: 1.242 for white PM, 1.111 for white
FM, and 1.151 for random-walk FM. Although the random-walk FM case
is important, its optimal drift estimator, mcan second diflerence, performs
poorly in the presence of other phase noises. Morcover, the standard devia-
tion of the four-point w estimator is only 1.051 times that of the second-place
estimator, least-squares linear fit to frequency.

The heavily model-dependent biases shown in Fig. 2 lead to an unsat-
isfactory situation in which guesses about the long-term noise type have to
be made in order to compensate for the bias of the net mvar estimator.



Other methods for uncoupling deterministic and random aspects of clock
data are already being investigated or used. Iligllcr-order variances, such
as Hadamard variance (mean-square third difference of ) and wavelet vari-
ances, automatically kill the quadratic component of z (t). The “totalvar”
processing method, which augments a data sequence with a reflected copy of
itself, has been found toreduce the bias of drift removal fromn conventional
Allan variance in a specific case [9]. Perhaps a combination of frequency-
domain techniques could be useful: one might performn a spectral estimation
procedure to characterize the random noise, while estimating the drift rate
as the mean of the second phase differences by applying a data taper with
low sidelobes, to reject all but the lowest-frequency components. One could
hope to assign confidence intervals to the results in a model-free way.

This work was performed at the Jet Propulsion laboratory, California
Institute of Technology, under a contract with the National Aeronautics and
Space Administration.
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Table 1: Variance of frequency drift estimators. Names: w4 = 4-point w,
LSz = least-squares quadratic fit to x,23= 3-point z,L.Sy= least-squares
linear fit to y,L.Sz=- least-scluarcs constant fit to z,%2= 2-point 3. Each
entry is to be multiplied by the factor on the right. The numbers in brackets
are rankings within each noise type.

w-discrete x-discrete
noise type w4 LSz a3 Lsy 1S.2 or 32 factor
white PM 125050 90[] 24 f, T 18 fuT -
flicker PM  74.84 [1] 75[2] 24 In(4.441 £,7)181n (4.117f,T) 5
white FM W Y 8[3] 6[1] N 2%
flicker FM  10.9 00[2] & [4] 161n 23] 9[1] 3+2InN 4t

rand.-wk. FM 3831 2[5 814 129 2[1] h o7



Fig. 1. Parameter selection for the 4-point w drift estimator. The mini-
max point of the five variance curves is circled.

Fig. 2. Bias of net mvar estimator, expressed as 100(y/expected mvar — 1).

Fig. 3. Change in equivalent degrees of freedom when removing drift
from mvar estimator. Plotted is edf (biased) — edf (unbiased).
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